1. Implement, Optimize and Troubleshoot Core IP Technologies
1.1. Packet over SONET
1.1.1. Cisco HDLC encapsulation
1.1.2. PPP encapsulation
1.1.3. Frame
Relay encapsulation
1.1.4. Maximum transmission unit (MTU)
1.1.5. Cyclic
redundancy check (CRC)
1.1.6. Keepalive timer
1.1.7. Frame Relay DLCI on
point to point sub-interface
1.1.8. SONET Controller
1.1.9. POS
channel
1.2. GE/10GE in the Core
1.2.1. MAC accounting
1.2.2. Speed
1.2.3. Duplex mode
1.2.4. Carrier
Delay
1.2.5. MTU
1.2.6. Flow control
1.2.7. 802.1Q VLAN
sub-interface
1.3. IGP routing
1.3.1. IS-IS Multi topology
1.3.2. IS-IS Multi instance
1.3.2. IS-IS
System Type
1.3.3. IS-IS Metric Type
1.3.4. IS-IS Area
1.3.5. IS-IS
Designated Intermediate Systems
1.3.6. IS-IS Interface Circuit Type
1.3.7.
IS-IS Interface Metric
1.3.8. IS-IS Retransmission Throttle
Interval
1.3.9. IS-IS LSP Interval and Lifetime
1.3.10. IS-IS
Point-to-point Adjacency over Broadcast Media
1.3.11. IS-IS route
leaking
1.3.12. OSPF multi instance
1.3.13. OSPF Multi Areas
1.3.14.
OSPF router ID
1.3.15. OSPF over different physical network
1.3.16. OSPF
neighbor
1.3.17. OSPF interface cost
1.3.18. OPSF designated
router
1.3.19. OSPFv3 support for IPv6
1.3.20. EIGRP multi
instance
1.3.21. EIGRP Autonomous System Configuration
1.3.22. EIGRP Cost
Metrics
1.3.23. EIGRP Equal and Unequal Cost Load Balancing
1.3.24. EIGRP
support for IPv6
1.3.25. RIP v2
1.3.26. RIP support for IPv6
1.3.27.
Redistribution between OSPF,IS-IS and EIGRP
1.3.28. Redistribution of
Directly connected routes
1.3.29. Redistribution of Static routes
1.3.30.
Route summary
1.3.31. IOS-XR routing policy language (RPL)
1.3.32. Routing
policy using route-map
1.4. MPLS and LDP
1.4.1. IP CEF
1.4.2. LDP router ID
1.4.3. LDP interface
1.4.4. LDP
neighbor auto discovery
1.4.5. MPLS MTU
1.4.6. MPLS LDP Static
label
1.4.7. MPLS LDP—Local Label Allocation Filtering
1.4.8. MPLS LDP-IGP
synchronization
1.4.9. MPLS LDP Inbound/outbound Label Binding Filtering
1.5. MPLS Traffic Engineering
1.5.1. IS-IS support for MPLS TE
1.5.2. OSPF support for MPLS TE
1.5.3.
RSVP for MPLS TE
1.5.4. MPLS TE tunnel setup
1.5.5. MPLS TE Tunnel
bandwidth
1.5.6. MPLS TE Automatic Bandwidth
1.5.7. MPLS TE Static
route
1.5.8. MPLS TE Auto route
1.5.9. MPLS TE Policy route
1.5.10.
MPLS TE Forwarding adjacency
1.5.11. MPLS TE Metric
1.5.12. MPLS TE LSP
attributes
1.5.13. MPLS TE Class-based Tunnel selection
1.5.14. MPLS TE
Policy-based Tunnel selection
1.5.15. MPLS Pseudowire Tunnel
Selection
1.5.16. Point to multi point ( P2MP) MPLS TE
1.5.17.
Inter-Domain MPLS TE
1.5.18. Inter-Area MPLS TE
1.6. BGP
1.6.1. IBGP IPv4/IPv6 Peering
1.6.2. EBGP IPv4/IPv6 Peering
1.6.3. EBGP
IPv4/IPv6 multi hop peering
1.6.4. BGP IPv4/IPv6 routes advertising
1.6.5. EBGP IPv4/IPv6 peering using local-AS
1.6.6. EBGP IPv4/IPv6
peering using AS-override
1.6.7. BGP IPv4/IPv6 using private AS
number
1.6.8. Dual AS configuration for Network AS migration
1.6.9. BGP
Next-Hop
1.6.10. BGP Weight
1.6.11. BGP Local Preference
1.6.12. BGP
MED
1.6.13. BGP Origin
1.6.14. BGP Communites
1.6.15. BGP
Confederation
1.6.16. BGP Router reflector
1.6.17. BGP Cluster
list
1.6.18. BGP Peer Groups
1.6.19. BGP Synchronization
1.6.20. BGP
Aggregation
1.6.21. BGP Conditional Advertising
1.6.22. BGP Routing
policy
1.6.23. Redistributing IGP, static and connected route into
BGP
1.6.24. BGP Multi-path Load Sharing
1.6.25. BGP Link Bandwidth
1.7. Multicast
1.7.1. IPv4/IPv6 Multicast addressing
1.7.2. IPv4/IPv6 Multicast routing
1.7.3. PIM Sparse Mode for IPv4/IPv6
1.7.4. IGMP V2/V3
1.7.5. IPV6
Multicast Listener Discover (MLD)
1.7.6. PIM Source Specific Multicast (SSM)
for IPv4/IPv6
1.7.7. Multicast Rate-limiting
1.7.8. PIM Bidirectional
(BiDir)
1.7.9. PIM Static RP
1.7.10. PIM Bootstrap Router (BSR)
1.7.11.
PIM Auto RP
1.7.12. PIM Anycast RP
1.7.13. Multicast Administrative
Boundaries
1.7.14. MSDP
1.7.15. MP-BGP peer for Multicast
1.7.16.
MP-BGP Multicast route advertising
1.8. High Availability
1.8.1. NSF/SSO for IGP routing
1.8.2. NSF/SSO for BGP routing
1.8.3.
NSF/SSO for LDP, TE, Multicast
1.8.4. HSRP, VRRP, GLBP
1.8.5. Graceful
Restart
1.8.6. Control Plane Policing (CPP)
1.8.7. Bidirectional
forwarding detection (BFD)
1.8.8. IP event dampening
1.8.9. IGP Fast
Re-route
1.8.10. MPLS TE Fast Re-route (FRR)
1.8.11. Link Protection using
MPLS-TE
1.8.12. Node Production using MPLS-TE
1.8.13. Embedded event
management (EEM)
1.9. Convergence
1.9.1. IS-IS fast convergence
1.9.2. IS-IS to utilize the Overload
Bit
1.9.3. OSPF fast convergence
1.9.4. BGP fast convergence
1.9.5. BGP
Route Dampening
1.9.6. BGP Fast Peering Session Deactivation
1.9.7. BGP
Prefix Independent Convergence (PIC)
1.9.8. BGP next hop tracking
1.9.9.
BGP address tracking filter
1.9.10. BGP path MTU discovery
1.9.11. IP fast
reroute (IPFRR)
1.9.12. Multicast-only Fast Re-Route (MoFRR)
1.9.13. MPLS
LDP convergence
1.10. SP QoS
1.10.1. Marking using DSCP, IP precedence and CoS
1.10.2. Priority
Queuing
1.10.3. Custom Queuing
1.10.4. Weighted Fair Queuing
1.10.5.
WRED
1.10.6. Policing
1.10.7. Class-based Weighted Faire Queuing
(CB-WFQ)
1.10.8. Low-Latency Queuing (LLQ)
1.10.9. Random-Detect using
MQC
1.10.10. NBAR for QoS
1.10.11. MPLS EXP
1.10.12. Differentiated
Services Traffic Engineering (DS-TE)
1.10.13. Maximum Allocation Model
(MAM)
1.10.14. Russian Dolls Model (RDM)
1.10.15. Class-Based Tunnel
Selection: CBTS
1.10.16. Policy-based Tunnel Selection: PBTS
1.11. Security in core
1.11.1. Standard Access-lists
1.11.2. Extended Access-lists
1.11.3.
Routing Protocol Authentication for RIP V2
1.11.4. Routing Protocol
Authentication for EIGRP
1.11.5. Routing Protocol Authentication for OSPF
1.11.6. Routing Protocol Authentication for IS-IS
1.11.7. Routing
Protocol Authentication for BGP
1.11.8. BGP TTL Security Check
1.11.9.
Infrastructure ACL
1.11.10. Anti Fragment Attacks
1.11.11. Filtering RFC
1918 Routes
1.11.12. uRPF for Anti-Spoofinng
1.11.13. Selective packet
discard (SPD)
1.11.14. LDP authentication
1.11.15. Remote triggered black
hole (RTBH)
1.11.16. NTP
1.11.17. Attack mitigation
1.11.18. SNMP
Management
1.11.19. IP packet Accounting
1.11.20. Syslog
2. Implement, Optimize and Troubleshoot Edge/Access Technologies
2.1. FE/GE and Ethernet Trunk
2.1.1. Ethernet channel
2.1.2. Virtual Trunking Protocol (VTP)
2.1.3.
Spanning Tree Protocol (STP)
2.1.4. 802.1Q VLAN
2.1.5. 802.1QinQ
2.1.6.
802.1ad Provider Bridges (PB)
2.1.7. 802.1ah Provider Backbone Bridge
(PBB)
2.1.8. Connectivity Fault Management (CFM)
2.2. Frame-Relay connection
2.2.1. Frame-Relay DLCI
2.2.2. Frame-Relay map
2.2.3. Frame-Relay
switching
2.2.4. Frame-Relay multilink
2.2.5. Frame-Relay
LMI-Type
2.2.6. PPP over Frame-Relay
2.3. PPP connections
2.3.1. PPP encapsulation
2.3.2. PPP multilink
2.3.3. PPP Multi chassis
multilink
2.3.4. PPPoE client
2.3.5. PPPoE server
2.3.6. PPP
authentication
3. Implement, Optimize and Troubleshoot Layer 3 VPN
3.1. Intra AS L3 MPLS VPN
3.1.1. MP-IBGP VPNv4/VPNv6 peering
3.1.2. MP-IBGP peering using loopback
interface
3.1.3. VPNv4/VPNv6 Route Reflector
3.1.4. VRF
definition
3.1.5. Route Distinguisher
3.1.6. Route Target
3.1.7. Route
Target import/export
3.1.8. Intra AS MPLS VPNV4/VPNV6 load
balancing
3.1.9. SOO Community
3.1.10. PE-CE – RIP V2
3.1.11. PE-CE –
IS-IS
3.1.12. PE-CE – OSPF
3.1.13. PE-CE – EBGP
3.1.14. PE-CE – Static
Routes
3.1.15. Redistributing dynamic PE-CE routes into
VPNv4/VPNv6
3.1.16. Redistributing static PE-CE routes into
VPNv4/VPNv6
3.1.17. Redistributing VPN4/VPNv6 routes into PE-CE routing
table
3.1.18. Intra-AS MPLS VPN multipath
3.1.19. Intra-AS MPLS VPN path
selection
3.2. Inter AS L3 MPLS VPN
3.2.1. MP-EBGP VPNv4/VPNv6 peering using direct interface
3.2.2. MP-EBGP
VPNv4/VPNv6 peer using multi-hop interface
3.2.3. MP-EBGP VPNv4/VPNv6 peer
between RRs
3.2.4. VPNV4/VPNv6 next-hop unchanged
3.2.5. VPNV4/VPNv6
next-hop self
3.2.6. Multi VRF between ASPEs
3.2.7. Inter-AS MPLS
VPNV4/VPNv6 multipath
3.2.8. Route target rewrite
3.2.9. Inter-AS MPLS VPN
path selection
3.3. Carrier supporting carrier
3.3.1. MPLS LDP in customer carrier site
3.3.2. EBGPv4 + label between
CSC-PE and CSC-CE
3.3.3. IGP + LDP between CSC-PE and CSC-CE
3.3.4. MPLS
VPNv4 between customer carrier sites PEs
3.3.5. CSC VPN load
balancing
3.3.6. VRF definition in customer carrier site
3.3.7. Customer
carrier site PE-CE routing
3.4. VPN Extranet and internet access
3.4.1. MP-BGP VPNv4/VPNv6 Extra-Net
3.4.2. MP-BGP VPNv4/VPNv6 internet
access
3.5. VRF service
3.5.1. Multiple VRF
3.5.2. Multiple VRF routing
3.5.3. VRF Selection
based on Source IP Address
3.6. Multicast VPN
3.6.1. Default MDT
3.6.2. Data MDT
3.6.3. MP-BGP mdt peering
3.6.4.
Multicast routing in VPN site
3.6.5. PM-SM in VPN site
3.6.6. RP in VPN
site
3.6.7. Multicast VPN extranet
3.7. GRE L3 VPN
3.7.1. MPLS VPN—L3VPN over GRE
4. Implement, Optimize and Troubleshoot Layer 2 VPN
4.1. AToM
4.1.1. Psuedowire class
4.1.2. Ethernet over MPLS (EoMPLS)
4.1.3.
Ethernet VLAN over MPLS
4.1.4. Frame Relay over MPLS (FRoMPLS)
4.1.5. HDLC
over MPLS (HDLCoMPLS)
4.1.6. PPP over MPLS (PPPoMPLS)
4.1.7. PWE3 control
using LDP
4.1.8. Psuedowire redundancy
4.1.9. AToM interworking
4.1.10.
AToM local switching
4.1.11. AToM intra-as support
4.1.12. AToM inter-as
support
4.1.13. Traffic Engineering with AToM
4.2. VPLS and Carrier Ethernet
4.2.1. VPLS
4.2.2. H-VPLS
4.2.3. VFI definition
4.2.4. VPLS BGP auto
discovery
4.2.5. VLAN attached circuit
4.2.6. QinQ attached
circuit
4.2.7. 802.1ad attached circuit
4.2.8. 802.1ah attached
circuit
4.2.9. VPLS/H-VPLS redundancy
4.3. L2TPV3 for L2VPN
4.3.1. L2TPv3
4.3.2. L2TPv3 VPN local switching
4.3.3. L2TPv3 VPN
interworking
4.4. GRE L2VPN
4.4.1. L2VPN over GRE
5. Implement, Optimize and Troubleshoot Managed Services Traversing the
Core
5.1. Managed Voice/Video services traversing the core
5.1.1. Traverse Voice/video packet
5.1.2. Traverse call signal packet
5.2. Managed Security services traversing the core
5.2.1. Traverse IKE packet
5.2.2. Traverse ESP, AH packet
5.2.3.
Traverse SSL packet
5.3. Service Level Agreements for managed services
5.3.1. IP SLA sender
5.3.2. IP SLA responder
5.3.3. IP SLA for MPLS
VPN
5.3.4. Netflow
5.3.5. Netflow for MPLS
5.3.6. Netflow for
Multicast